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1. INTRODUCTION 

The purpose of this article is to describe a new fast 
Fourier transform (FFT) method for calculating spherical 
Bessel transforms. The method is based on an expansion 
representation of the spherical Bessel functions in terms of 
sine and cosine trigonometric functions, multiplied by poly- 
nomials in inverse powers of the argument of the Bessel 
function [ 11. The method should be of value in algorithms 
in which frequent calculations of spherical Bessel transforms 
are required at many values of the transform variables, 
which is frequently the situation in time-dependent 
scattering calculations. The method makes use of FFTs 
for which the computing time for each transform scales as 
Nlog,(N), where N is the number of quadrature points, 
rather than the N2 scaling of ordinary numerical quadra- 
tures. Also, the explicit evaluation of the spherical Bessel 
functions is not required in the method. The method differs 
from that given in the work of J. D. Talman [2, 33 and 
A. E. Siegmon [4]. In the work of Talman [2, 33 and 
Siegman [4], a change to logarithmic variables is required 
to recast the integral transform as a convolution integral, 
which is then evaluated by FFT procedures. However, as 
pointed out by Talman, this makes the step size Ar increase 
proportionally with r and renders the method unsuitable 
for functions of an oscillatory nature. In particular, the 
oscillatory nature of the function is lost in the increasing 
mesh intervals. In essence, the Talman-Siegman method is 
excellent for bound state wave functions, but it is not 

* Predoctoral fellows, R. A. Welch Foundation Grant E-608. 
+ Supported in part under NSF Grant CHE89-07429. 
: Ames Laboratory is operated for the U.S. Department of Energy by 

Iowa State University under Contract No. 2-7405-ENG-82. This research 
was supported by the Division of Chemical Sciences, Office of Basic Energy 
Sciences. 

suitable for scattering state wave functions [24]. This in 
fact has been our experience and has led us to propose the 
present method. 

In Section 2 the method is described. The numerical tests 
and results for a central potential scattering problem are 
briefly summarized in Section 3. 

2. METHOD 

We are interested in evaluating spherical Bessel trans- 
forms of the form 

(1) 

and the inverse transform 

where j,(kr) is the usual regular spherical Bessel function 
[ 1 ] of integer order, 1. 

The expansion representation of the spherical Bessel 
functions is given by [ 1 ] 

j,(kr) = j$ 
F 

sin(kr - lrc/2) 
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where [l/2] denotes the largest integer less than or equal to 
l/2. The spherical Bessel transform is then computed via fast 
sine and cosine transforms of the individual terms in the 
summations. The number of sine transforms is [ 1/2] + 1 and 
the number of cosine transforms is [(I- 1)/2] + 1 which 
gives a total of I+ 1 transforms. This gives a method which 
scales, in principle, as (I + 1) N log, N compared to the N2 
scaling for simple quadratures. Therefore, this expansion 
method should be more efficient than simple quadrature up 
to l’s of the order of N/log, N. 

In the implementation of Eq. (3), care must be exercised 
in obtaining results for values of kr much less than one. As 
the value of I increases, the finite precision of the computer 
causes difficulties because the (kr)’ behavior of the j,(kr) 
results in Eq. (3) from a delicate cancellation between the 
portion of the right-hand side of Eq. (3) containing 
sin(kr- 1~12) and that containing cos(kr- h/2). As kr 
decreases, the terms containing higher inverse powers of kr 
overwhelm all other terms and the result is instability. We 
remedied this problem for scattering by setting the value of 
j,(kr) to zero for kr 4 1. This does not affect the results and 
leads to a completely stable algorithm. We note that in addi- 
tion to the fact thatj,(kr), I> 0, tends to zero as kr becomes 
small, so also does the wave function for the fth partial 
wave. Of course, a more precise procedure can be used on 
a Taylor series representation of the Bessel function at small 
kr values. This involves more computational effort than our 
procedure of simply setting the value to zero, an effort which 
is not justified for our calculations. We note that while the 
problem of precision in the expansion of Eq. (3) for small kr 
becomes more significant as 1 increases, the replacement of 
j,(kr) by zero becomes more accurate in this situation. 

3. EXAMPLE APPLICATION 

This method has been applied to a central potential scat- 
tering problem [6, 71. The tangent of the phase shifts was 

TABLE I 

Numerical Run Parameters 

Variable Description Value 

1max 
At 

P 
6 

10 
ko 
rm,x 
N 
Ar( N = 256) 
Ar(N=512) 
Ak 
k,,,(N = 256) 
k,,,(N= 512) 

Maximum propagation time 10.0 
Time step 0.005 
Reduced mass 1.0 
Width of driver packet 0.4 
Initial center of packet in r-space 9.0 
Initial center of packet in k-space 9.0 
Maximum value of r-grid 62.71 
Number of grid points 256, 512 
r-grid step size 0.245 
r-grid step size 0.123 
k-grid step size 0.05 
Maximum value of k-grid 12.8 
Maximum value of k-grid 25.6 

calculated and accuracy of results and computation times 
were verified by comparison with those obtained using 
standard trapezoidal quadrature and a time independent 
variable phase method [ 83. 

The scattering calculation involves solving the time- 
dependent Lippmann-Schwinger equation for the evolution 
of a wavepacket describing the scattering of a structureless 
particle by a spherically symmetric potential, V. The partial 
wave decomposition is employed, leading to the separate 
propagation of wavepackets describing the various orbital 
angular momenta making up the total wavepacket. The 
propagation equation is given by 

(k,I,~,(nr))=Il+~~~k2/4~]~‘fi 

X 
I 
0m drr2e ~ fv(r)"T/hjl(k,.) 

X 
K > 

_ i ,g: wjelV(r) idfi 

X 
s 

O” dk’k’2(fi2k’2/2p) j,(k’r 
0 

x (k’, II Yu,Lb)> + <rl Y’r(O 

) 

I)}, (4) 

where j,(kr) is a spherical Bessel function, (k, 11 Y,(m)) is 
the time dependent scattering wave function in k-space, 
(r 1 Y,(O)) is the initial wave function in r-space which we 
chose as 

(r 1 Y,(O)) = (2m2)-“4 exp( - [r - ro12/402) 

x exp( - ik,r), (5) 

and V(r) is the model potential 

V(r) = -exp( -r). (6) 

The other parameters used in the calculation are given in 
Table I. 

The tangent of the phase shift, tan(q), is related to the 
T-matrix by 

Wvr) = CT, 

and the T-matrix elements are given by 

T= ---& jr dteiE’lh J‘% drr2j,(kr) V(r) YAr, t), (8) m 0 

where A(k) is the initial wave packet in k-space. 
Each of the calculations consisted of 2000 time step 
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iterations, and each iteration involves four spherical Bessel 
transforms. A forward and backward transform was carried 
out in Eq. (4) to obtain (k, II Y,(nz)). A third transform is 
used to transform (k, 11 ‘u,(m)) to (rl !Y,(nz)), and finally 
the transform in Eq. (8) is carried out. The real and 
imaginary parts of the transformed function were computed 
separately, yielding a total of eight transforms performed 
per time step. Example results are shown in Table II. 

The level of agreement among the methods is substan- 
tially better than that generally required in comparisons of 
different methods in scattering. A comparison (not shown) 
of the level of agreement between the time dependent results 
with 256 and 512 quadrature points using the expansion 
method, indicates that they are well converged. We note 
that the FFT is also based on a simple trapezoidal rule 
quadrature, so that one may wonder why the numerical 
results obtained by the PEM and TQM are not identical. 
They are, in fact, the same for most k and I values. However, 
the two methods can differ because they utilize different 
algorithms for computing the Bessel functions. Equation (3) 
is used for the PEM, while a standard recursion is used for 
the TQM. This difference is expected to be more noticeable 
for larger 1 values, and this is seen to be true for the results. 
However, in most cases, the PEM and TQM results agree 
more closely with each other than with the VPM results. 

Table II also compares the CPU times for the TQM and 
PEM, showing that the PEM does yield an enhancement 
of speed. The TQM scales as N2, while PEM scales as 
(I + 1) N log, N. A theoretical speed factor SF is defined as 
the ratio of these scaling relations. Table III gives a com- 
parison between this theoretical SF and the actual ratio of 
TQM to PEM CPU times. The reason the theoretical SF 
and actual SF do not agree is probably that the actual SF 
is computed using the CPU time for the total calculation, 
and includes other computations besides the Bessel trans- 
form. Thus, the ratio of actual CPU times should only 
become equal to SF if the Bessel transform dominates the 
calculation. 

TABLE II 

Comparison of Tangent Phase Shifts and CPU Times for 
Two Values of 1 with N = 512, Ak = 0.05, Ar = 0.123 

I=2 

k 

2.0 
3.0 
4.0 
5.0 
6.0 
7.0 
8.0 

VPM TQM % difl PEM % diff 
CPUT: 15122 1889 

0.2600 0.2597 1.15(-l) 0.2597 1.15(-l) 
0.2288 0.2287 4.27( -2) 0.2287 4.37( - 2) 
0.1945 0.1946 5.14( -2) 0.1946 5.14( -2) 
0.1668 0.1672 2.40-l) 0.1672 2.40( - 1) 
0.1451 0.1459 5.51( - 1) 0.1459 5.51(-l) 
0.1279 0.1292 1.02 0.1292 1.02 
0.1143 0.1158 1.31 0.1158 1.31 

1=8 

In conclusion, we do indeed find that the PEM yields a 
useful improvement over a straightforward TQM (Newton- 
Coates) evaluation of the spherical Bessel transform, at 
least for a significant range of orbital angular momenta and 
numbers of grid points. Because of the fundamental role 
played by such transforms in quantum scattering (i.e., any 
three dimensional, gas phase collision system will require 
the evaluation of spherical Bessel transforms in some way or 
another), it is worthwhile to search for new ways to 
calculate them. 

Alternatively, one may seek to reformulate the scattering 
equations so as to enable one to directly employ FFTs in the 
propagation algorithm. We are pursuing both options in 
our research. 

1. 

k VPM TQM % diff PEM % diff 2. 

CPUT: 3537 2249 3. 

2.0 0.2027( - 1) 0.2024( - 1) 1.48( - 1) 0.2024( - 1) 1.48( - 1) 
3.0 0.4670( - 1) 0.4670( - 1) 0.00 0.4670( - 1) 0.00 
4.0 0.6358( - 1) 0.6354( - 1) 6.29( -2) 0.6354( - 1) 6.29( -2) 
5.0 0.7159( - 1) 0.7166( - 1) 9.78( -2) 0.7166( - 1) 9.78( -2) 
6.0 0.7425( - 1) 0.7453( - 1) 3.77( - 1) 0.7453( - 1) 3.77( - 1) 
7.0 0.7404( - 1) 0.7452( - 1) 6.48( - 1) 0.7452( - 1) 6.62( - 1) 
8.0 0.7229(-l) 0.7292(-l) 8.71(-l) 0.7291(-l) 8.58(-l) 

4. 

5. 

6. 

7. 

Note. For the TQM and PEM results the percent difference from the 
VPM results are also given. 

8. 

TABLE III 

Theoretical versus Actual Speed Factor (SF) = N/(/ + 1) log, N 

Run 
Theoretical 

SF SF 

1=2, N=256 10.7 4.0 
1=8,N=256 3.6 1.4 
1=2, N=512 19.0 8.0 
i=8,N=512 6.3 2.7 
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